The incorporation of crop straw with fertilization is beneficial for soil carbon sequestration and cropland fertility improvement. Yet, relatively little is known about how fertilization regulates the emissions of the greenhouse gas nitrous oxide (N2O) in response to straw incorporation, particularly in soils subjected to long-term fertilization regimes. Herein, the arable soil subjected to a 31-year history of five inorganic or organic fertilizer regimes (unfertilized; chemical fertilizer application, NPK; 200% NPK application, 2 × NPK; manure application, M; NPK plus manure application, NPKM) was incubated with and without rice straw to evaluate how historical fertilization influences the impact of straw addition on N2O emissions. The results showed that compared to the unfertilized treatment, historical fertilization strongly increased N2O emissions by 0.48- to 34-fold, resulting from increased contents of hot water-extracted organic carbon (HWEOC), NO3-, and available phosphorus (Olsen-P). Straw addition had little impact on N2O emission from the unfertilized and NPK treatments, primarily due to Olsen-P limitation. In contrast, straw addition increased N2O emissions by 102-316% from the 2 × NPK, M, and NPKM treatments as compared to the corresponding straw-unamended treatments. These results indicated that N2O emissions in response to straw addition were largely regulated by historical fertilization. The N2O emissions were closely associated with the depletion of NO3- and decoupled from change in NH4+ content, suggesting that NO3- was the main substrate for N2O production upon straw addition. The stoichiometric ratios of HWEOC to mineral N and mineral N to Olsen-P were key factors affecting N2O emissions, underscoring the importance of resource stoichiometry in regulating N2O emissions. https://www.selleckchem.com/products/hro761.html In conclusion, historical fertilization largely regulated the impacts of crop straw incorporation on N2O emissions via shifts in NO3- depletion and the stoichiometry of HWEOC, mineral N, and Olsen-P.The ability of particulate matter (PM) to induce oxidative stress is frequently estimated by acellular oxidative potential (OP) assays, such as ascorbic acid (AA) and 1,4-dithiothreitol (DTT), used as proxy of reactive oxygen species (ROS) generation in biological systems, and particle-bound ROS measurement, such as 2',7'-dichlorodihydrofluorescein (DCFH) assay. In this study, we evaluated the spatial and size distribution of OP results obtained by three OP assays (OPAA, OPDCFH and OPDTT), to qualitative identify the relative relevance of single source contributions in building up OP values and to map the PM potential to induce oxidative stress in living organisms. To this aim, AA, DCFH and DTT assays were applied to size-segregated PM samples, collected by low-pressure cascade impactors, and to PM10 samples collected at 23 different sampling sites (about 1 km between each other) in Terni, an urban and industrial hot-spot of Central Italy, by using recently developed high spatial resolution samplers of PM, which worked in parallel during three monitoring periods (February, April and December 2017). The sampling sites were chosen for representing the main spatially disaggregated sources of PM (vehicular traffic, rail network, domestic heating, power plant for waste treatment, steel plant) present in the study area. The obtained results clearly showed a very different sensitivity of the three assays toward each local PM source. OPAA was particularly sensitive toward coarse particles released from the railway, OPDCFH was sensible to fine particles released from the steel plant and domestic biomass heating, and OPDTT was quite selectively sensitive toward the fine fraction of PM released by industrial and biomass burning sources. The HACOR scale is a clinical score that can predict early failure of NIV in hypoxemic acute respiratory failure (ARF) The aim of this study is to analyze the validity of the HACOR scale. A retrospective study of a cohort of over 2749 episodes on 2711 consecutive patients requiring NIV for hypoxemic ARF in a polyvalent intensive care unit. The scale was measured before starting NIV and at 1, 6, 12, 24 and 48h after the initiation of NIV. NIV failure occurred in 963 patients (35%). The value of the HACOR scale before NIV did not differ between success and failure. However, at 1, 6, 12, 24 and 48h of NIV, the scale values clearly differed between the two groups. The HACOR scale at NIV initiation accurately predicts NIV failure in the first hour, with an optimal cut-off value of 8 points. The AUC for predicting NIV failure with HACOR at 1h is greater than 0.9 in patients with pneumonia and adult respiratory distress syndrome (ARDS). The HACOR scale measured at 1h after NIV initiation accurately predicts NIV failure, especially in pneumonia and ARDS.The HACOR scale measured at 1 h after NIV initiation accurately predicts NIV failure, especially in pneumonia and ARDS.Control of helminth parasites is a key challenge for human and veterinary medicine. In the absence of effective vaccines and adequate sanitation, prophylaxis and treatment commonly rely upon anthelmintics. There are concerns about the development of drug resistance, side-effects, lack of efficacy and cost-effectiveness that drive the need for new classes of anthelmintics. Despite this need, only three new drug classes have reached the animal market since 2000 and no new classes of anthelmintic have been approved for human use. So where are all the anthelmintics? What are the barriers to anthelmintic discovery, and what emerging opportunities can be used to address this? This was a discussion group focus at the 2019 8th Consortium for Anthelmintic Resistance and Susceptibility (CARS) in Wisconsin, USA. Here we report the findings of the group in the broader context of the human and veterinary anthelmintic discovery pipeline, highlighting challenges unique to antiparasitic drug discovery. We comment on why the development of novel anthelmintics has been so rare. Further, we discuss potential opportunities for drug development moving into the 21st Century.Herbivorous fishes play a critical role in the maintenance of coral reefs through grazing and cropping of various benthic algae types. Herbivorous fish assemblages are sensitive to changes in the reef environment and are often targeted by local fisheries. This can lead to a decline in ecosystem functions if key groups are reduced. The present study investigates the morphological and ecological trait diversity of herbivorous reef fish assemblages in habitats differing in relative benthic coverage i) coral-dominated, ii) algae-dominated, and iii) an intermediate habitat. Trait diversity for conspicuous herbivorous fishes was measured using three trait diversity indices trait richness, trait divergence, and trait evenness. These indices were derived from in situ community surveys and feeding observations, morphological assessment of feeding mechanics from locally collected specimens, and ecological information obtained from published data. Trait diversity, reflected in higher trait evenness and lower trait richness, was lower within algae-dominated habitats than coral-dominated habitats, suggesting that algae-dominated habitats may be compromised by the lack of essential functions provided by key species. |