Global mangrove forests have exhibited distinct changes in the past decades owing to anthropogenic activities, with land-use pressure being among the main causes of mangrove loss. Thus, understanding the inherent conflicts between conservation/restoration and land-use demands is fundamental for mangrove management. To predict how land-use changes will drive the spatiotemporal patterns of mangrove habitats, a novel integrated framework coupling MaxEnt? and Dyna-CLUE modeling was proposed. The coupled model can identify suitable mangrove afforestation habitats and predict the impact of land-use change on potential mangrove habitats. In this study, the model was used to predict the mangrove habitat change in 2030 in the province with the most mangrove forests in China. The potential suitable habitat of 14 mangrove species under three coastal land-use scenarios were mapped using the coupled model. Under the current trend scenario, only 41.2% of the existing wetland would be retained, whereas the potential distribution area of all the mangrove species will decrease by an average of 30%. Under the sustainable development and ecological protection scenarios, the mangrove habitat could be increased by 11% to 61%, depending on the species. Different mangrove species showed varied sensitivity to the improved land-use policies, with several species being harder to restore than others, even under aggressive protection and restoration policies. The combined use of both MaxEnt? and Dyna-CLUE models proved complementary and offered insights into the impacts of different land-use policies on the spatiotemporal change of mangrove habitats.Most previous studies have focused on the continuous exposure of aquatic organisms to nanoplastics. https://www.selleckchem.com/products/MDV3100.html However, persistent pollutants in natural aquatic surroundings are a threat, and their concentrations are continuously increasing. The discussion and research into the effects of accumulative exposure to these materials are limited. Therefore, this study aimed to compare the effects of continuous and accumulative exposure to polystyrene (PS) nanoplastics (80 nm) on Chlorella pyrenoidosa during chronic toxicity. The results indicated that under conditions of continuous exposure, this alga exhibited self-recovery to defend against the negative effects of PS nanoplastics during 15-21 days of exposure (the 21-d inhibitory rate was 1.41%). However, one unanticipated finding was that during the same period of accumulative exposure, nanoplastics retained a substantial and stable inhibitory effect on the algal growth (the 21-d inhibitory rate was 6.79% in accumulative exposure for twice), indicating the invalid self-recovery of algae. The results of scanning electron microscopy demonstrated that on day 21, the degree of damage to the algal cells under accumulative exposure was more severe than that under continuous exposure. Hence, nanoplastics exerted an irreversibly negative effect on aquatic organisms depending on the pattern, frequency, concentration, and duration of exposure. This project evaluated the practical significance of nanoplastics in aquatic ecosystems.Nitric oxide (NO), reactive oxygen species (ROS), and phytohormones in plants often initiate responses to sources of abiotic stress. However, we have a poor understanding of the cross-talk between NO, ROS, and phytohormones during exogenous chiral auxin-induced phytotoxicity. In this study, the toxicity of the chiral synthetic auxin herbicide dichlorprop (DCPP) to Arabidopsis thaliana, as well as the mutual regulation of NO, hydrogen peroxide (H2O2), superoxide anion (O2.-), and phytohormones at the enantiomeric level was investigated. The ROS production exhibited an enantioselective manner, further, that was positively correlated with the change of the morphological indicators. This confirmed that ROS played an important role in the enantioselective effect of DCPP. The distribution of ROS and NO was partially overlapped, indicating that the production of NO may be affected by ROS, and also related to the degree of plant damage. In terms of phytohormones, the level of salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) in the whole plant increased as the (R)-DCPP concentration applied increased, however, the trend has changed, when the data of leaves and roots was discussed separately. The results revealed that the redistribution of phytohormones may exist between leaves and roots, caused by the joint action of ROS and NO. The differences in the biological activity identified between the two enantiomers in this study enhance our understanding of the toxicity mechanism of exogenous auxin via their effects on phytohormones.Clarifying the relationship between meteorological factors and ozone can provide scientific support for ozone pollution prediction, but the effects of boundary layer meteorology, especially boundary layer height and turbulence, on ozone pollution are rarely studied. Here, ozone and its related meteorological factors were observed in summer in Shijiazhuang, a city with the most serious ozone pollution on the North China Plain. The forced and free convection boundary layers were classified using ground remote observations. After eliminating the forced convection condition, strong free convection conditions, exhibiting a high boundary layer height, high wind speed, strong turbulence and large-scale free convection velocity, were found to be beneficial for the aggravation of ozone pollution. Combined with the ozone profile detected by a tethered balloon, the ozone chemical budget was calculated using the differences in the column ozone concentrations between the morning and afternoon, and the results confirmed the impact of free convection intensity on ozone pollution. The change in ozone sensitivity from VOCs sensitivity to NOx sensitivity driven by strong free convection was the main reason for the deterioration of ozone pollution. This study clarified the impact of boundary layer meteorology on ozone and its sensitivity and has important practical significance for ozone pollution prevention and early warning.The estuary of Río de la Plata, in the eastern coast of South America, is a highly anthropized area that brings a high load of contaminants to the surrounding waters, which may have detrimental effects on the local marine fauna. The franciscana dolphin (Pontoporia blainvillei) is a small cetacean species endemic of the southwestern Atlantic Ocean listed as Vulnerable in the IUCN red list. In this study, we assessed the concentrations of 13 trace elements in bone samples from 100 franciscana dolphins that were found stranded dead or incidentally bycaught in the Río de la Plata and adjacent coast between 1953 and 2015. Elements were, in decreasing order of mean concentrations Zn > Sr > Fe > Al > Mn > Cu > Pb > Cr > Ni > As > Hg > Cd > Se. The concentrations of Al, Cr and Fe were slightly higher in females than in males. The concentrations of As, Ni, and Pb significantly decreased with body length. Throughout the study period, the concentrations of Al, Cr, Cu, Fe, Mn and Ni significantly increased, while the concentrations of As, Pb and Sr significantly decreased. |