CONCLUSION The occurrence of sensitive skin is related to the weak microbial barrier associated with the significant decrease of Staphylococcus epidermidis. V.Excessive systemic uptake of inorganic fluorides causes disturbances of bone homeostasis. The mechanism of skeletal fluorosis is still uncertain. This study aimed to study the effect of fluoride on osteocyte-driven osteoclastogenesis and probe into the role of PTH in this process. IDG-SW3 cells seeded in collagen-coated constructs were developed into osteocyte-like cells through induction of mineral agents. Then, osteocyte-like cells were exposed to fluoride in the presence or absence of parathyroid hormone (PTH). Cell viability and their capacity to produce receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) and sclerostin (SOST) were detected by MTT and Western blot assays, respectively. Finally, a transwell coculture system using osteocyte-like cells seeded in the low compartment, and osteoclast precursors added in the inserts was developed to observe the osteocyte-driven osteoclasogenesis response to fluoride with or without PTH, and the expression of molecules involved in this mechanism were measure by real time RT-PCR. Results showed that osteocytes withstood a toxic dose of fluoride, and yet PTH administration significantly reduced osteocytes viability. PTH amplified the effect of fluoride on the expression of osteoclastogenesis-related molecules in osteocyte, but did not enlarged the stimulating effect of fluoride on osteoclastogenesis drove by osteocyte coculture. Gene expression levels of TRAP, RANK, JNK and NFAtc1 significantly increased in fluoride affected osteoclast precursor cocultured with osteocyte-like cells. The impact of fluoride on osteocyte-driven osteoclast differentiation was stronger than that of PTH. In conclusion, osteocyte played a pivotal role on the mechanism underlying fluoride-affected osteoclastogenesis in which RANK-JNK-NFATc1 signaling pathway was involved, and PTH had a significant impact in this process. Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease worldwide and is strongly associated with the presence of oxidative stress. Disturbances in lipid metabolism lead to hepatic lipid accumulation, which affects different reactive oxygen species (ROS) generators, including mitochondria, endoplasmic reticulum, and NADPH oxidase. Mitochondrial function adapts to NAFLD mainly through the downregulation of the electron transport chain (ETC) and the preserved or enhanced capacity of mitochondrial fatty acid oxidation, which stimulates ROS overproduction within different ETC components upstream of cytochrome c oxidase. However, non-ETC sources of ROS, in particular, fatty acid β-oxidation, appear to produce more ROS in hepatic metabolic diseases. Endoplasmic reticulum stress and NADPH oxidase alterations are also associated with NAFLD, but the degree of their contribution to oxidative stress in NAFLD remains unclear. Increased ROS generation induces changes in insulin sensitivity and in the expression and activity of key enzymes involved in lipid metabolism. Moreover, the interaction between redox signaling and innate immune signaling forms a complex network that regulates inflammatory responses. Based on the mechanistic view described above, this review summarizes the mechanisms that may account for the excessive production of ROS, the potential mechanistic roles of ROS that drive NAFLD progression, and therapeutic interventions that are related to oxidative stress. The study of bidirectional conditioning began more than a century ago, yet it has failed to take strong root in psychology and neuroscience. We revisit this topic by exploiting E. A. Asratyan's alternating procedure of stimulus presentation, in which both forward (e.g., A → B) and backward (e.g., B → A) training trials are concurrently given, in order to analyze their potential interaction. Specifically, using a two-alternative, forced-choice task, we trained humans and pigeons to learn associations between stimuli depending on whether they were presented as sample stimuli or choice stimuli. Trials were selected from an associative network in which forward and backward associations between sample and choice stimuli were synergistic (bidirectional network) or from an associative network in which these associations were not synergistic (unidirectional network). Humans were faster to learn associations from the bidirectional network than from the unidirectional network; additionally, they performed poorly on unidirectional trials that allowed for the expression of (incorrect) bidirectional associations. Unlike humans, pigeons showed no evidence of bidirectional associations. The reasons for this species difference as well as future directions for research deploying Asratyan's two-way training technique are discussed. INTRODUCTION Vestibular migraine as an entity was described in 1999 and its pathophysiology is still not established. Simultaneously with research to better understand vestibular migraine, there has been an improvement in vestibular function assessment. https://www.selleckchem.com/products/m344.html The video-head impulse test is one of the latest tools to evaluate vestibular function, measuring its vestibular-ocular reflex gain. OBJECTIVE To evaluate vestibular function of vestibular migraine patients using video-head impulse test. METHODS Cross-sectional case-control study homogeneous by age and gender with vestibular migraine patients according to the 2012-2013 Barany Society/International Headache Society diagnostic criteria submitted to video-head impulse test during intercrisis period. RESULTS 31 vestibular migraine patients were evaluated with a predominantly female group (90.3%) and mean age of 41 years old. Vestibular function was normal in both patient and control groups. Gain values for horizontal canals were similar between the two groups, but gain values for vertical canals were higher in the group with vestibular migraine (p less then 0.05). Patients with vestibular migraine felt more dizziness while performing the video-head impulse test than control subjects (p less then 0.001). CONCLUSIONS Patients with vestibular migraine present normal vestibular function during intercrisis period when evaluated by video-head impulse test. Vertical canals, however, have higher gains in patients with vestibular migraine than in control subjects. Vestibular migraine patients feel dizziness more often while conducting video-head impulse test.


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2025-01-23 (木) 05:32:32 (26d)