Alkaline phosphatases are the main enzymes required by microorganisms to hydrolyse organic phosphorus into available phosphate in aquatic environments. The investigations of alkaline phosphatase activity (APA) usually generate numerous samples (size fractionation, Michaelis-Menten kinetics). Therefore, convenient and reliable preservation of incubated samples for a deferred analysis would be very useful when measurements cannot be performed right away. The APA of marine pond waters was measured using 4-Methylumbelliferyl phosphate (MUF-P) as the fluorogenic substrate modelling natural organic phosphorus compounds. Where typical inhibitors of other enzymatic activities, such as 1% sodium dodecyl sulfate, mercuric chloride, or buffered solutions of ammonium and glycine, failed to stop APA, the addition of formaldehyde efficiently inhibited APA. The effect of formaldehyde was the strongest with the highest concentration tested (4% final concentration) and in buffered (pH 8) solutions. Since a slow and gradual increase in APA may persist with time, the combination of the addition of 4% buffered formaldehyde with immediate freezing is the best method to entirely inhibit APA. The maximal rate of hydrolysis (Vmax) and the Michaelis constant (Km) of formaldehyde (4%)-inhibited samples did not significantly change during storage at -20 °C for 11 days. The method was successfully tested on samples with extremely high values of APA (15000-40000 nM h-1) that were preserved for 1 month at -20 °C (98% inhibition). This method is a reliable and useful means of preserving incubated samples, and it provides convenient controls for background fluorescence of water and substrate, without provoking abiotic hydrolysis of the substrate.Lead is a heavy metal that is bio accumulative and non-biodegradable that poses a threat to our health when it exists in excess in our bloodstream. It has found its way into wastewater from mostly chemical industrial processes. In this article, we investigated the adsorption and hence removal of lead (II) ions from wastewater in order to purify it for re-use in industrial processes or for plant and animal use. We synthesized nano silica hollow spheres (NSHS) and used them as adsorbents to remove lead ions from wastewater. When we characterized the NSHS using X-Ray diffraction, the amorphous nature of silica was evident with average crystal size of 39.5 nm. Scanning electron microscopy was used to determine the morphology of the adsorbent and the particles were found to be spherical in shape within a size range of 100-200 nm. Thermogravimetric analysis was used to determine the mass loss of NSHS which was ~2% at 800 °C. Our experimental results from adsorption studies showed that there was a linear relationship between temperature (27-60 °C) and adsorption efficiency and an inverse relationship between initial metal concentration (50-300 mg/L) and adsorption efficiency. At a maximum temperature of 60 °C and maximum initial metal concentration of 300 mg/L, the adsorption capacity was 200 mg/g and 262 mg/g, respectively while the adsorption efficiency was 99.6% and 87.4%, respectively. Our equilibrium and thermodynamic results revealed that the process was better modelled by the Langmuir adsorption isotherm (qmax = 266.89 mg/g and b = 0.89 L/mg). The adsorption process was both endothermic (ΔH = 97 kJ/mol) and spontaneous (ΔG = -22 kJ/mol). We can conclude that we were able to successfully synthesize NSHS, use them to remove lead (II) ions and the produced NSHS have a capacity that is higher than most other adsorbents investigated by other researchers.In this work, we have developed a simple and very effective experimental strategy for the reaction of Knoevenagel via the condensation of aromatic aldehydes substituted with active methylene compounds in the presence of hybrid nanocomposites xMCl2-yNaPO3 (MCl2 = 2,2'-dibenzimidazolyl butane dichlorhydrates), under ecological conditions. The Phosphate-Benzimidazole hybrid nanocomposite as heterogeneous catalysts has demonstrated a high catalytic activity for the Knoevenagel condensation in ethanol as an ecological solvent. It has several advantages such as light reaction conditions, a simple and ecological working procedure. Meanwhile, xMCl2-yNaPO3 can be recovered by simple filtration and this catalytic system having an interesting lifetime (five cycles) with no decrease in activity.Some physical properties of spider silks, including mechanical strength and toughness, have been studied in many laboratories worldwide. Given that this silk is organic in nature, composed of protein, and has similar properties to metal wires or polymers, it has the potential for application in medicine, nanoelectronics, and other related areas. In this study, we worked on spider silk from the Nephila clavipes species collected from the wild and kept it in the nursery of the Autonomous University of the West, Cali, Colombia, to determine its physical, thermal, and mechanical properties, seeking possible applications in the medical and industrial sectors and comparing the material properties of the silk from the species from southwestern Colombia with those of the previously studied species from other regions. The mechanical characterization of the material was performed using a universal testing machine; thermal behavior was captured by a thermogravimetric analysis, differential scanning calorimetry, and mass spectrometry; and structural characterization was performed using diffraction X-rays. The results of the thermal characterization demonstrate that the spider silk loses 10 % of water content at 150 °C with significant changes at 400 °C, while the mechanical characterization indicates that the spider silk is much tougher than Kevlar 49 and Nylon 6 since it is capable of absorbing more energy before rupture. Magnetic resonance imaging (MRI) is usually the modality of choice to assess sciatica and intervertebral disc herniation. Despite remarkable progression in diagnostic imaging and surgical techniques, definite diagnosis based on imaging interpretation is still a great challenge. The aim of this study was to determine interobserver and intraobserver variability in reporting lumbar MRI between two neuroradiologists based on the new 2014 version of disc nomenclature. The study population was composed of 134 irresponsive to conservative therapy patients with clinical presentations of disc herniation and lumbar radiculopathy. MRI was taken from all the participants using a 1.5 T MRI system. Two neuroradiologists evaluated the images, separately and one of them did it twice and interpreted the scans in sagittal and axial planes. https://www.selleckchem.com/products/FK-506-(Tacrolimus).html Disc bulge, disc herniation and nerve root compression were evaluated at each level. Interobserver and interaobserver agreements between two neuroradiologists, and one neuroradiologist in two times of reporting were calculated for the evaluation of bulging and herniated discs and nerve root compression by applying the Kappa statistics.


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2025-01-23 (木) 07:22:12 (22d)