dramafold06
の編集
https://nativ.media:443/wiki/index.php?dramafold06
[
トップ
] [
編集
|
差分
|
バックアップ
|
添付
|
リロード
] [
新規
|
一覧
|
単語検索
|
最終更新
|
ヘルプ
]
-- 雛形とするページ --
stemplate9
systemplate1
anglewealth29
augustwing79
bailcanoe0
bicycle
blacksquid7
BracketName
bullbadger65
chat
cherryview36
congoash26
coversyria93
crowdorder4
crowrat5
dinnerchalk84
dirtspark8
divingtailor5
fireddrink41
FormattingRules
FrontPage
garliccrop28
girdlecough25
heatcannon64
Help
heronshare1
homeblue7
hookgate1
horsereport2
InterWiki
InterWikiName
InterWikiSandBox
irangrease8
jeepwound62
jumpsign8
lacebotany0
lacebush04
laughflare40
libratax78
lumberflag1
management
mantip8
markagenda9
MenuBar
mosquesharon9
nodemarket9
ovensquid5
partybubble42
peanutnorth22
peenperch5
perchbobcat43
periodbroker2
personformat66
petcrab68
petsteel08
pizzaamount7
puffinchest0
PukiWiki
PukiWiki/1.4
PukiWiki/1.4/Manual
PukiWiki/1.4/Manual/Plugin
PukiWiki/1.4/Manual/Plugin/A-D
PukiWiki/1.4/Manual/Plugin/E-G
PukiWiki/1.4/Manual/Plugin/H-K
PukiWiki/1.4/Manual/Plugin/L-N
PukiWiki/1.4/Manual/Plugin/O-R
PukiWiki/1.4/Manual/Plugin/S-U
PukiWiki/1.4/Manual/Plugin/V-Z
quailbobcat51
radishparty6
rakefelony1
rakegym4
rawqan
RecentDeleted
riverdriver7
rosething88
rubberbrace0
saladcanada3
saltneed41
SandBox
scentclass47
selectneck8
shelftooth73
silicacell53
silicadress66
spheretulip3
startsale4
streamview45
supplylook2
sushilocket2
swimcrook5
taxi
thrillcrime5
trouthead87
tulipskin2786
versecrow43
vesselsteel94
vestpull15
WikiEngines
WikiName
WikiWikiWeb
YukiWiki
...
Frequent urban flooding disasters can cause severe economic and property losses. Accordingly, the construction of sponge city has become critical to alleviating urban flooding. However, the functional and structural integration of Green Infrastructure (GI) and Gray Drainage Facility (GDF) is still a matter of concern. This study proposed a novel implementation framework for GI and GDF synchronization optimization (G-GSOIF) based on the SWMM and SUSTAIN models, and used data from Beilin District in Xi'an, China to verify the effects. The results show that the spatiotemporal integrated optimization design of GI and GDF proves to be effective in stormwater management. The total investment was reduced by 16.7% and economic benefit was increased by 15.4% based on disaster risk control, and the utilization rate of rainwater resources exceeded 40%. The Staged optimization model (SSOM) based on the SUSTAIN model established in the G-GSOIF was demonstrated to effectively cope with the impact of future climate change by adjusting and optimizing the design scheme dynamically in different simulation scenarios. Integrated LID (I-LID) measures are conducive for simulation of large catchment areas, and have the same implementation effect as distributed LID measures. The results of this study could support decision-making for urban stormwater management and sponge city construction.The increasing amount of plastic waste has raised concerns about microplastics (MPs) in aquatic environments. MPs can be fragmented into nanoplastics that can pass through water treatment processes and into tap water; potentially threatening human health because of their high adsorption capacity for hazardous organic materials and their intrinsic toxicity. This case study investigates the identification, fate, and removal efficiency of MPs in Korean drinking water treatment plants. Two sites on the Nakdong River, two lake reservoirs (raw water sources), and four corresponding drinking water treatment plants were targeted to trace the amounts, types, and sizes of MPs throughout the treatment process. Monthly quantitative and qualitative analyses were conducted by chemical image mapping using micro-Fourier-transform infrared spectroscopy. MPs larger than 20 μm were detected, and their sizes and types were quantified using siMPle software. Overall, the number of MPs in the river sites (January to April and Octobated with the MP abundance in both rivers (A and B) and lake reservoir C.Nitrification is a central process in nitrogen cycle in the ocean. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play significant roles in ammonia oxidation which is the first and rate-limiting step in nitrification, and their differential contribution to nitrification is an important issue, attracting extensive attention. In this study, based on the quantification of archaeal and bacterial amoA gene and the measurement of potential nitrification rate (PNR), we investigated the spatiotemporal dynamics of PNRs and the amoA gene abundance and transcript abundance of aerobic ammonia oxidizers in surface sediments collected in summer and spring across ~900 km of the Bohai Sea and Yellow Sea in China. The results revealed that the contribution of AOA to nitrification was greater than that of AOB in coastal sediments, probably due to salinity and ammonia concentration. Besides, seasons had significant effect on amoA gene abundance and transcript abundance, especially for AOA, while both seasons and sea areas had significant influence on PNR of AOA and AOB. Further analysis showed complex relationships among amoA gene abundances, transcript abundances and PNRs. More importantly, both spatial (geographic distance) and environmental factors were vital in explaining the variations of ammonia-oxidizing microorganism abundances and the PNRs.The ubiquitous existence of perfluoroalkyl acids (PFAAs) in aquatic environments might pose toxic potential to ecosystems. To assess the ecotoxicological responses and removal of submerged macrophyte to multiple PFAA pollutants in aquatic environments, a typical submerged macrophyte, Hydrilla verticillate, was exposed to solutions with 12 typical PFAAs in the present study. The results showed that PFAAs at concentrations higher than 10 μg/L had significantly passive effects on biomass, relative growth rates, chlorophyll contents, and chlorophyll autofluorescence. PFAAs could induce the accumulation of hydrogen peroxide and lipid peroxidation in H. verticillate. Significant upregulation of CAT was observed in treatments with more than 10 μg/L PFAAs (p less then 0.05). The results also showed that 13.53-20.01% and 19.73-37.72% of PFAAs could be removed in treatments without plants and with H. verticillate, respectively. The removal rates of PFAAs were significantly correlated with perfluoroalkyl chain length in treatments with H. verticillate. The removal of PFAAs was suggested to be related to the uptake of plant tissues and biosorption of microbiota. Furthermore, the dominant microbiota and biomarkers were identified in water and biofilm. Betaproteobacteriales was the most dominant microbiota at the order level. The presence of PFAAs could significantly increase the relative abundance of Micrococcales, Verrucomicrobiales, Rhizobiales, Sphingomonadales, Roseomonas, Cyanobium_PCC_6307, and Synechococcales. Our results provide scientific basis for evaluating the ecotoxicological responses and removal of submerged macrophytes in response to multiple PFAA pollutants at environmentally relevant levels, thereby providing insights into PFAA management and removal.Dust pollution is a critical challenge in achieving green mining of open-pit coal mines. The scientific basis for dust prevention and management hinges on a thorough understanding of the long-term characteristics of dust pollution. However, analyzing the characteristics of long-term dust pollution in open-pit coal mines has always been a void in research due to the effect of the mines' geographical location and operating conditions. This research investigated the dust pollution and delved into its key production and meteorological influencing elements in a cold-region open pit coal mining. The real-time data was monitored on-site during the four seasons of the year. The characteristics of dust pollution were determined by statistical analysis. The main factors affecting the dust concentration in different seasons were calculated using the comprehensive grey correlation degree. Finally, dust pollution from the mine to the surrounding area was simulated using the Hybrid Single Particle Lagrangian Integrated Trajectory model. The results revealed that dust pollution was most serious in winter, followed by autumn, spring, and summer. The concentrations of PM10 and PM2.5 exceed the national limit. Meteorological elements that substantially impact dust concentration vary season by season. The dew point temperature in spring, the solar radiation in summer and autumn, and the boundary layer height in winter were the most important elements. Mining activities pollute the surrounding areas more in winter, followed by autumn and spring. During the winter, the pollution is concentrated in Shanxi, while in the autumn and spring, it is concentrated in Inner Mongolia. Based on the research findings, optimal mine design strategies can be devised to avoid and regulate dust in mining and neighboring areas, especially during winter.The rivers of Guadeloupe and Martinique (French West Indies) show high levels of chlordecone (CLD) contamination. This persistent molecule has a dramatic impact on both aquatic ecosystems and human health. In these rivers, epilithic biofilms are the main endogenous primary producers and represent a central food source for fish and crustaceans. Recently, their viscoelastic properties have been shown to be effective in bio-assessing pollution in tropical environments. As these properties are closely related to the biochemical composition of the biofilms, biochemical (fatty acids, pigments, extracellular polymeric substances (EPS) monosaccharides) and molecular markers (T-RFLP fingerprints of bacteria, archaea and eukaryotes) were investigated. Strong links between CLD pollution and both biofilm biochemistry and microbial community composition were found. In particular, high levels of CLD were linked with modified exo-polysaccharides corresponding to carbohydrates with enhanced adsorption and adhesion properties. The observed change probably resulted from a preferential interaction between CLD and sugars and/or a differential microbial secretion of EPS in response to the pollutant. These changes were expected to impact viscoelastic properties of epilithic biofilms highlighting the effect of CLD pollution on biofilm EPS matrix. They also suggested that microorganisms implement a CLD scavenging strategy, providing new insights on the role of EPS in the adaptation of microorganisms to CLD-polluted environments.Information on pesticide metabolites is crucial for accurate environmental risk assessment. However, identifying the various metabolites of a novel pesticide is challenging since the potential metabolic pathways are unknown. In this study, we coupled diverse positional 14C labeling with high-resolution mass spectrometry to quantitatively and qualitatively study pesticide metabolism in rats. With the unique M/(M + 2) ratios derived from 14C, precursor compounds of metabolites could be better distinguished from impurity ions. Additionally, the use of diverse 14C labeling positions is a powerful tool to elucidate the complete metabolic fate of novel contaminants. Vanisulfane is a novel vanillin-derived antiviral agent with encouraging prospects for the efficient control of cucumber mosaic virus in China, but its metabolic pathways in mammals are still poorly understood. Thus, the metabolism of vanisulfane was studied in rats of both sexes by this strategy. The results showed that phase I and phase II metabolism occurred in both sexes. The former included mainly oxidation reactions, and the latter involved binding reactions that formed glucuronide, sulfate and amino acid conjugates. Sex-related differences were observed in the experiment, with earlier appearance of downstream metabolites and a preference for sulfate conjugate formation in males compared to females. This research facilitates the risk evaluation of vanisulfane, and offers an effective framework for screening unknown pesticide metabolic pathways, which could be applied to establish the metabolic profiles of other novel contaminants with limited information.The accumulation process of microplastics (MPs) is a key to understanding their fate in the environment. However, there is limited information about the short-term accumulation of MPs on macrophytes. The ability of macrophyte to attenuate wave and reduce current velocity is potentially facilitating MPs deposition. We hypothesize that the macroalgae retain MPs with their morphologies (filamentous and non-filamentous) being one of the factors to govern retention. Our hypothesis was tested by field observation during the dry season in Hong Kong when the macroalgae communities were the most diverse. MPs per biomass, surface area, or interstitial volume were used to represent the abundances on macroalgae. We found that filamentous algae retained a 2.35 times higher number of MPs when compared with non-filamentous algae if unit per biomass was considered. Other units, however, showed insignificant differences in MPs abundances between algal morphologies. Fibre was the most dominant shape of MPs with no significant difference in their abundances between filamentous and non-filamentous algae, suggesting fibres were retained regardless of the algal morphologies.
タイムスタンプを変更しない
Frequent urban flooding disasters can cause severe economic and property losses. Accordingly, the construction of sponge city has become critical to alleviating urban flooding. However, the functional and structural integration of Green Infrastructure (GI) and Gray Drainage Facility (GDF) is still a matter of concern. This study proposed a novel implementation framework for GI and GDF synchronization optimization (G-GSOIF) based on the SWMM and SUSTAIN models, and used data from Beilin District in Xi'an, China to verify the effects. The results show that the spatiotemporal integrated optimization design of GI and GDF proves to be effective in stormwater management. The total investment was reduced by 16.7% and economic benefit was increased by 15.4% based on disaster risk control, and the utilization rate of rainwater resources exceeded 40%. The Staged optimization model (SSOM) based on the SUSTAIN model established in the G-GSOIF was demonstrated to effectively cope with the impact of future climate change by adjusting and optimizing the design scheme dynamically in different simulation scenarios. Integrated LID (I-LID) measures are conducive for simulation of large catchment areas, and have the same implementation effect as distributed LID measures. The results of this study could support decision-making for urban stormwater management and sponge city construction.The increasing amount of plastic waste has raised concerns about microplastics (MPs) in aquatic environments. MPs can be fragmented into nanoplastics that can pass through water treatment processes and into tap water; potentially threatening human health because of their high adsorption capacity for hazardous organic materials and their intrinsic toxicity. This case study investigates the identification, fate, and removal efficiency of MPs in Korean drinking water treatment plants. Two sites on the Nakdong River, two lake reservoirs (raw water sources), and four corresponding drinking water treatment plants were targeted to trace the amounts, types, and sizes of MPs throughout the treatment process. Monthly quantitative and qualitative analyses were conducted by chemical image mapping using micro-Fourier-transform infrared spectroscopy. MPs larger than 20 μm were detected, and their sizes and types were quantified using siMPle software. Overall, the number of MPs in the river sites (January to April and Octobated with the MP abundance in both rivers (A and B) and lake reservoir C.Nitrification is a central process in nitrogen cycle in the ocean. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play significant roles in ammonia oxidation which is the first and rate-limiting step in nitrification, and their differential contribution to nitrification is an important issue, attracting extensive attention. In this study, based on the quantification of archaeal and bacterial amoA gene and the measurement of potential nitrification rate (PNR), we investigated the spatiotemporal dynamics of PNRs and the amoA gene abundance and transcript abundance of aerobic ammonia oxidizers in surface sediments collected in summer and spring across ~900 km of the Bohai Sea and Yellow Sea in China. The results revealed that the contribution of AOA to nitrification was greater than that of AOB in coastal sediments, probably due to salinity and ammonia concentration. Besides, seasons had significant effect on amoA gene abundance and transcript abundance, especially for AOA, while both seasons and sea areas had significant influence on PNR of AOA and AOB. Further analysis showed complex relationships among amoA gene abundances, transcript abundances and PNRs. More importantly, both spatial (geographic distance) and environmental factors were vital in explaining the variations of ammonia-oxidizing microorganism abundances and the PNRs.The ubiquitous existence of perfluoroalkyl acids (PFAAs) in aquatic environments might pose toxic potential to ecosystems. To assess the ecotoxicological responses and removal of submerged macrophyte to multiple PFAA pollutants in aquatic environments, a typical submerged macrophyte, Hydrilla verticillate, was exposed to solutions with 12 typical PFAAs in the present study. The results showed that PFAAs at concentrations higher than 10 μg/L had significantly passive effects on biomass, relative growth rates, chlorophyll contents, and chlorophyll autofluorescence. PFAAs could induce the accumulation of hydrogen peroxide and lipid peroxidation in H. verticillate. Significant upregulation of CAT was observed in treatments with more than 10 μg/L PFAAs (p less then 0.05). The results also showed that 13.53-20.01% and 19.73-37.72% of PFAAs could be removed in treatments without plants and with H. verticillate, respectively. The removal rates of PFAAs were significantly correlated with perfluoroalkyl chain length in treatments with H. verticillate. The removal of PFAAs was suggested to be related to the uptake of plant tissues and biosorption of microbiota. Furthermore, the dominant microbiota and biomarkers were identified in water and biofilm. Betaproteobacteriales was the most dominant microbiota at the order level. The presence of PFAAs could significantly increase the relative abundance of Micrococcales, Verrucomicrobiales, Rhizobiales, Sphingomonadales, Roseomonas, Cyanobium_PCC_6307, and Synechococcales. Our results provide scientific basis for evaluating the ecotoxicological responses and removal of submerged macrophytes in response to multiple PFAA pollutants at environmentally relevant levels, thereby providing insights into PFAA management and removal.Dust pollution is a critical challenge in achieving green mining of open-pit coal mines. The scientific basis for dust prevention and management hinges on a thorough understanding of the long-term characteristics of dust pollution. However, analyzing the characteristics of long-term dust pollution in open-pit coal mines has always been a void in research due to the effect of the mines' geographical location and operating conditions. This research investigated the dust pollution and delved into its key production and meteorological influencing elements in a cold-region open pit coal mining. The real-time data was monitored on-site during the four seasons of the year. The characteristics of dust pollution were determined by statistical analysis. The main factors affecting the dust concentration in different seasons were calculated using the comprehensive grey correlation degree. Finally, dust pollution from the mine to the surrounding area was simulated using the Hybrid Single Particle Lagrangian Integrated Trajectory model. The results revealed that dust pollution was most serious in winter, followed by autumn, spring, and summer. The concentrations of PM10 and PM2.5 exceed the national limit. Meteorological elements that substantially impact dust concentration vary season by season. The dew point temperature in spring, the solar radiation in summer and autumn, and the boundary layer height in winter were the most important elements. Mining activities pollute the surrounding areas more in winter, followed by autumn and spring. During the winter, the pollution is concentrated in Shanxi, while in the autumn and spring, it is concentrated in Inner Mongolia. Based on the research findings, optimal mine design strategies can be devised to avoid and regulate dust in mining and neighboring areas, especially during winter.The rivers of Guadeloupe and Martinique (French West Indies) show high levels of chlordecone (CLD) contamination. This persistent molecule has a dramatic impact on both aquatic ecosystems and human health. In these rivers, epilithic biofilms are the main endogenous primary producers and represent a central food source for fish and crustaceans. Recently, their viscoelastic properties have been shown to be effective in bio-assessing pollution in tropical environments. As these properties are closely related to the biochemical composition of the biofilms, biochemical (fatty acids, pigments, extracellular polymeric substances (EPS) monosaccharides) and molecular markers (T-RFLP fingerprints of bacteria, archaea and eukaryotes) were investigated. Strong links between CLD pollution and both biofilm biochemistry and microbial community composition were found. In particular, high levels of CLD were linked with modified exo-polysaccharides corresponding to carbohydrates with enhanced adsorption and adhesion properties. The observed change probably resulted from a preferential interaction between CLD and sugars and/or a differential microbial secretion of EPS in response to the pollutant. These changes were expected to impact viscoelastic properties of epilithic biofilms highlighting the effect of CLD pollution on biofilm EPS matrix. They also suggested that microorganisms implement a CLD scavenging strategy, providing new insights on the role of EPS in the adaptation of microorganisms to CLD-polluted environments.Information on pesticide metabolites is crucial for accurate environmental risk assessment. However, identifying the various metabolites of a novel pesticide is challenging since the potential metabolic pathways are unknown. In this study, we coupled diverse positional 14C labeling with high-resolution mass spectrometry to quantitatively and qualitatively study pesticide metabolism in rats. With the unique M/(M + 2) ratios derived from 14C, precursor compounds of metabolites could be better distinguished from impurity ions. Additionally, the use of diverse 14C labeling positions is a powerful tool to elucidate the complete metabolic fate of novel contaminants. Vanisulfane is a novel vanillin-derived antiviral agent with encouraging prospects for the efficient control of cucumber mosaic virus in China, but its metabolic pathways in mammals are still poorly understood. Thus, the metabolism of vanisulfane was studied in rats of both sexes by this strategy. The results showed that phase I and phase II metabolism occurred in both sexes. The former included mainly oxidation reactions, and the latter involved binding reactions that formed glucuronide, sulfate and amino acid conjugates. Sex-related differences were observed in the experiment, with earlier appearance of downstream metabolites and a preference for sulfate conjugate formation in males compared to females. This research facilitates the risk evaluation of vanisulfane, and offers an effective framework for screening unknown pesticide metabolic pathways, which could be applied to establish the metabolic profiles of other novel contaminants with limited information.The accumulation process of microplastics (MPs) is a key to understanding their fate in the environment. However, there is limited information about the short-term accumulation of MPs on macrophytes. The ability of macrophyte to attenuate wave and reduce current velocity is potentially facilitating MPs deposition. We hypothesize that the macroalgae retain MPs with their morphologies (filamentous and non-filamentous) being one of the factors to govern retention. Our hypothesis was tested by field observation during the dry season in Hong Kong when the macroalgae communities were the most diverse. MPs per biomass, surface area, or interstitial volume were used to represent the abundances on macroalgae. We found that filamentous algae retained a 2.35 times higher number of MPs when compared with non-filamentous algae if unit per biomass was considered. Other units, however, showed insignificant differences in MPs abundances between algal morphologies. Fibre was the most dominant shape of MPs with no significant difference in their abundances between filamentous and non-filamentous algae, suggesting fibres were retained regardless of the algal morphologies.
テキスト整形のルールを表示する