rocketrobin108
の編集
https://nativ.media:443/wiki/index.php?rocketrobin108
[
トップ
] [
編集
|
差分
|
バックアップ
|
添付
|
リロード
] [
新規
|
一覧
|
単語検索
|
最終更新
|
ヘルプ
]
-- 雛形とするページ --
stemplate9
systemplate1
anglewealth29
augustwing79
bailcanoe0
bicycle
blacksquid7
BracketName
bullbadger65
chat
cherryview36
congoash26
coversyria93
crowdorder4
crowrat5
dinnerchalk84
dirtspark8
divingtailor5
fireddrink41
FormattingRules
FrontPage
garliccrop28
girdlecough25
heatcannon64
Help
heronshare1
homeblue7
hookgate1
horsereport2
InterWiki
InterWikiName
InterWikiSandBox
irangrease8
jeepwound62
jumpsign8
lacebotany0
lacebush04
laughflare40
libratax78
lumberflag1
management
mantip8
markagenda9
MenuBar
mosquesharon9
nodemarket9
ovensquid5
partybubble42
peanutnorth22
peenperch5
perchbobcat43
periodbroker2
personformat66
petcrab68
petsteel08
pizzaamount7
puffinchest0
PukiWiki
PukiWiki/1.4
PukiWiki/1.4/Manual
PukiWiki/1.4/Manual/Plugin
PukiWiki/1.4/Manual/Plugin/A-D
PukiWiki/1.4/Manual/Plugin/E-G
PukiWiki/1.4/Manual/Plugin/H-K
PukiWiki/1.4/Manual/Plugin/L-N
PukiWiki/1.4/Manual/Plugin/O-R
PukiWiki/1.4/Manual/Plugin/S-U
PukiWiki/1.4/Manual/Plugin/V-Z
quailbobcat51
radishparty6
rakefelony1
rakegym4
rawqan
RecentDeleted
riverdriver7
rosething88
rubberbrace0
saladcanada3
saltneed41
SandBox
scentclass47
selectneck8
shelftooth73
silicacell53
silicadress66
spheretulip3
startsale4
streamview45
supplylook2
sushilocket2
swimcrook5
taxi
thrillcrime5
trouthead87
tulipskin2786
versecrow43
vesselsteel94
vestpull15
WikiEngines
WikiName
WikiWikiWeb
YukiWiki
...
2 ppm in fresh samples, which disappears with magic angle spinning. Thus, the fatty acid signals are at least partially from membrane bilayer structures, and we propose that they are linked to the submicroscopic vascularization channels similar to the dense canaliculi network in mammalian bones. Our detection of phospholipids from bones depended critically on two factors (1) the elimination of the overwhelming triglyceride signals from marrows and (2) the preservation of water that biomembranes require. The relaxation data reveal aspects of lipid fluidity that have not been elucidated by previous order parameter studies on model membranes. Relaxation times have long been considered difficult to interpret. A robust and renewed understanding may be beneficial.Understanding molecular mechanisms of enzymatic reactions is of vital importance in biochemistry and biophysics. Here, we introduce new functions of hybrid quantum mechanical/molecular mechanical (QM/MM) calculations in the GENESIS program to compute the minimum-energy pathways (MEPs) and free-energy profiles of enzymatic reactions. For this purpose, an interface in GENESIS is developed to utilize a highly parallel electronic structure program, QSimulate-QM (https//qsimulate.com), calling it as a shared library from GENESIS. Second, algorithms to search the MEP are implemented, combining the string method (E et al. J. Chem. Phys. https://www.selleckchem.com/products/adenine-sulfate.html 2007, 126, 164103) with the energy minimization of the buffer MM region. The method implemented in GENESIS is applied to an enzyme, triosephosphate isomerase, which converts dihyroxyacetone phosphate to glyceraldehyde 3-phosphate in four proton-transfer processes. QM/MM-molecular dynamics simulations show performances of greater than 1 ns/day with the density functional tight binding (DFTB), and 10-30 ps/day with the hybrid density functional theory, B3LYP-D3. These performances allow us to compute not only MEP but also the potential of mean force (PMF) of the enzymatic reactions using the QM/MM calculations. The barrier height obtained as 13 kcal mol-1 with B3LYP-D3 in the QM/MM calculation is in agreement with the experimental results. The impact of conformational sampling in PMF calculations and the level of electronic structure calculations (DFTB vs B3LYP-D3) suggests reliable computational protocols for enzymatic reactions without high computational costs.Longipetalol A (1) is an unprecedented highly modified triterpenoid with a unique 1,2-seco-3-(2-oxo-phenylethyl)-17α-13,30-cyclodammarane skeleton, featuring an acetal-lactone fragment. It was isolated from Dichapetalum longipetalum along with two additional derivatives, namely, longipetalols B (2) and C (3). Their structures were elucidated using spectroscopic analyses combined with single-crystal X-ray diffraction. Compounds 1, 2, and 3 exhibited inhibitory effects on nitric oxide production in lipopolysaccharide-induced RAW264.7 macrophages.Herein, we report the synthesis, characterization, and photophysical properties of the crown-like structure of [3]cyclo-1,8-pyrenes (compounds 9 and 10). Planar pyrenyl arylene-ethynylene macrocycles are used as the precursors to synthesize these pyrene-based cycloarenes by [4 + 2] cycloaddition reaction with good yields. These molecules are confirmed by nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. The structure of 9 was unambiguously determined by single-crystal X-ray diffraction. Their photophysical properties are investigated by steady-state absorption, fluorescence, and time-resolved fluorescence spectroscopies, combined with theoretical calculations.Obesity-associated insulin resistance plays a central role in the pathogenesis of type 2 diabetes. A promising approach to decrease insulin resistance in obesity is to inhibit the protein tyrosine phosphatases that negatively regulate insulin receptor signaling. The low-molecular-weight protein tyrosine phosphatase (LMPTP) acts as a critical promoter of insulin resistance in obesity by inhibiting phosphorylation of the liver insulin receptor activation motif. Here, we report development of a novel purine-based chemical series of LMPTP inhibitors. These compounds inhibit LMPTP with an uncompetitive mechanism and are highly selective for LMPTP over other protein tyrosine phosphatases. We also report the generation of a highly orally bioavailable purine-based analogue that reverses obesity-induced diabetes in mice.Interactions between distant DNA segments play important roles in various biological processes, such as DNA recombination. Certain restriction enzymes create DNA loops when two sites are held together and then cleave the DNA. DNA looping is important during DNA synapsis. Here we investigated the mechanisms of DNA looping by restriction enzyme SfiI by measuring the properties of the system at various temperatures. Different sized loop complexes, mediated by SfiI-DNA interactions, were visualized with AFM. The experimental results revealed that small loops are more favorable compared to other loop sizes at all temperatures. Our theoretical model found that entropic cost dominates at all conditions, which explains the preference for short loops. Furthermore, specific loop sizes were predicted as favorable from an energetic point of view. These predictions were tested by experiments with transiently assembled SfiI loops on a substrate with a single SfiI site.A long series of Michael acceptors are studied computationally as potential alternatives to the maleimides that are used in most antibody-drug conjugates to link Cys of mAbs with cytotoxic drugs. The products of the reaction of methanethiol (CH3SH/MeSH, as a simple model of Cys) with N-methylated ethynesulfonamide, 2-ethynylpyridinium ion, propynamide, and methyl ethynephosphonamidate (that is, with HC≡C-EWG) are predicted by the M06-2X/6-311+G(d,p) method to be thermodynamically more stable, in relation to their precursors, than that of MeSH with N-methylmaleimide and, in general, with H2C═CH-EWG; calculations with AcCysOMe and tBuSH are also included. However, for the addition of the anion (MeS-), which is the reactive species, the order changes and N-methylated 2-vinylpyridinium ion, 2,3-butadienamide, and maleimide may give more easily the anionic adducts than several activated triple bonds; moreover, the calculated ΔG⧧ values increase following the order HC≡C-SO2NHMe, N-methylmaleimide, HC≡C-PO(OMe)NHMe, and HC≡C-CONHMe.
タイムスタンプを変更しない
2 ppm in fresh samples, which disappears with magic angle spinning. Thus, the fatty acid signals are at least partially from membrane bilayer structures, and we propose that they are linked to the submicroscopic vascularization channels similar to the dense canaliculi network in mammalian bones. Our detection of phospholipids from bones depended critically on two factors (1) the elimination of the overwhelming triglyceride signals from marrows and (2) the preservation of water that biomembranes require. The relaxation data reveal aspects of lipid fluidity that have not been elucidated by previous order parameter studies on model membranes. Relaxation times have long been considered difficult to interpret. A robust and renewed understanding may be beneficial.Understanding molecular mechanisms of enzymatic reactions is of vital importance in biochemistry and biophysics. Here, we introduce new functions of hybrid quantum mechanical/molecular mechanical (QM/MM) calculations in the GENESIS program to compute the minimum-energy pathways (MEPs) and free-energy profiles of enzymatic reactions. For this purpose, an interface in GENESIS is developed to utilize a highly parallel electronic structure program, QSimulate-QM (https//qsimulate.com), calling it as a shared library from GENESIS. Second, algorithms to search the MEP are implemented, combining the string method (E et al. J. Chem. Phys. https://www.selleckchem.com/products/adenine-sulfate.html 2007, 126, 164103) with the energy minimization of the buffer MM region. The method implemented in GENESIS is applied to an enzyme, triosephosphate isomerase, which converts dihyroxyacetone phosphate to glyceraldehyde 3-phosphate in four proton-transfer processes. QM/MM-molecular dynamics simulations show performances of greater than 1 ns/day with the density functional tight binding (DFTB), and 10-30 ps/day with the hybrid density functional theory, B3LYP-D3. These performances allow us to compute not only MEP but also the potential of mean force (PMF) of the enzymatic reactions using the QM/MM calculations. The barrier height obtained as 13 kcal mol-1 with B3LYP-D3 in the QM/MM calculation is in agreement with the experimental results. The impact of conformational sampling in PMF calculations and the level of electronic structure calculations (DFTB vs B3LYP-D3) suggests reliable computational protocols for enzymatic reactions without high computational costs.Longipetalol A (1) is an unprecedented highly modified triterpenoid with a unique 1,2-seco-3-(2-oxo-phenylethyl)-17α-13,30-cyclodammarane skeleton, featuring an acetal-lactone fragment. It was isolated from Dichapetalum longipetalum along with two additional derivatives, namely, longipetalols B (2) and C (3). Their structures were elucidated using spectroscopic analyses combined with single-crystal X-ray diffraction. Compounds 1, 2, and 3 exhibited inhibitory effects on nitric oxide production in lipopolysaccharide-induced RAW264.7 macrophages.Herein, we report the synthesis, characterization, and photophysical properties of the crown-like structure of [3]cyclo-1,8-pyrenes (compounds 9 and 10). Planar pyrenyl arylene-ethynylene macrocycles are used as the precursors to synthesize these pyrene-based cycloarenes by [4 + 2] cycloaddition reaction with good yields. These molecules are confirmed by nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. The structure of 9 was unambiguously determined by single-crystal X-ray diffraction. Their photophysical properties are investigated by steady-state absorption, fluorescence, and time-resolved fluorescence spectroscopies, combined with theoretical calculations.Obesity-associated insulin resistance plays a central role in the pathogenesis of type 2 diabetes. A promising approach to decrease insulin resistance in obesity is to inhibit the protein tyrosine phosphatases that negatively regulate insulin receptor signaling. The low-molecular-weight protein tyrosine phosphatase (LMPTP) acts as a critical promoter of insulin resistance in obesity by inhibiting phosphorylation of the liver insulin receptor activation motif. Here, we report development of a novel purine-based chemical series of LMPTP inhibitors. These compounds inhibit LMPTP with an uncompetitive mechanism and are highly selective for LMPTP over other protein tyrosine phosphatases. We also report the generation of a highly orally bioavailable purine-based analogue that reverses obesity-induced diabetes in mice.Interactions between distant DNA segments play important roles in various biological processes, such as DNA recombination. Certain restriction enzymes create DNA loops when two sites are held together and then cleave the DNA. DNA looping is important during DNA synapsis. Here we investigated the mechanisms of DNA looping by restriction enzyme SfiI by measuring the properties of the system at various temperatures. Different sized loop complexes, mediated by SfiI-DNA interactions, were visualized with AFM. The experimental results revealed that small loops are more favorable compared to other loop sizes at all temperatures. Our theoretical model found that entropic cost dominates at all conditions, which explains the preference for short loops. Furthermore, specific loop sizes were predicted as favorable from an energetic point of view. These predictions were tested by experiments with transiently assembled SfiI loops on a substrate with a single SfiI site.A long series of Michael acceptors are studied computationally as potential alternatives to the maleimides that are used in most antibody-drug conjugates to link Cys of mAbs with cytotoxic drugs. The products of the reaction of methanethiol (CH3SH/MeSH, as a simple model of Cys) with N-methylated ethynesulfonamide, 2-ethynylpyridinium ion, propynamide, and methyl ethynephosphonamidate (that is, with HC≡C-EWG) are predicted by the M06-2X/6-311+G(d,p) method to be thermodynamically more stable, in relation to their precursors, than that of MeSH with N-methylmaleimide and, in general, with H2C═CH-EWG; calculations with AcCysOMe and tBuSH are also included. However, for the addition of the anion (MeS-), which is the reactive species, the order changes and N-methylated 2-vinylpyridinium ion, 2,3-butadienamide, and maleimide may give more easily the anionic adducts than several activated triple bonds; moreover, the calculated ΔG⧧ values increase following the order HC≡C-SO2NHMe, N-methylmaleimide, HC≡C-PO(OMe)NHMe, and HC≡C-CONHMe.
テキスト整形のルールを表示する